A Pair of Residues That Interactively Affect Diterpene Synthase Product Outcome
نویسندگان
چکیده
The labdane-related diterpenoids (LRDs) are an important superfamily of natural products whose structural diversity critically depends on the hydrocarbon skeletal structures generated, in large part, by class I diterpene synthases. In the plant kingdom, where the LRDs are predominantly found, the relevant class I diterpene synthases are clearly derived from the ent-kaurene synthase (KS) required in all land plants for phytohormone biosynthesis and, hence, are often termed KS-like (KSL). Previous work, initiated by the distinct function of two alleles of a KSL from rice, OsKSL5, identified a single residue switch with a profound effect on not only OsKSL5 product outcome but also that of land plant KSs more broadly, specifically, replacement of a key isoleucine with threonine, which interrupts formation of the tetracyclic ent-isokaurene at the tricyclic stage, leading to production of ent-pimaradiene instead. Here, further studies of these alleles led to discovery of another, nearby residue that tunes product outcome. Substitution for this newly identified residue is additionally shown to exert an epistatic effect in KSs, altering product distribution only if combined with replacement of the key isoleucine. On the other hand, this pair of residues was found to exert additive effects on the product outcome mediated by distantly related KSLs from the eudicot castor bean. Accordingly, it was possible to use a rational combination of substitutions for this pair of residues to engineer significantly increased (dominant) selectivity for novel 8α-hydroxy-ent-pimar-15-ene product outcome in the KS from the dicot Arabidopsis thaliana, demonstrating the utility of these results.
منابع مشابه
Increasing complexity of a diterpene synthase reaction with a single residue switch.
Terpene synthases often catalyze complex reactions involving intricate series of carbocation intermediates. The resulting, generally cyclical, structures provide initial hydrocarbon frameworks that underlie the astonishing structural diversity of the enormous class of terpenoid natural products (>50,000 known), and these enzymes often mediate the committed step in their particular biosynthetic ...
متن کاملA cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis.
The committed step of taxol (paclitaxel) biosynthesis is catalyzed by taxa-4(5),11(12)-diene synthase, a diterpene cyclase responsible for transforming the ubiquitous isoprenoid intermediate geranylgeranyl diphosphate to the parent olefin with a taxane skeleton. To obtain the corresponding cDNA clone, a set of degenerate primers was constructed based on consensus sequences of related monoterpen...
متن کاملFunctional plasticity of paralogous diterpene synthases involved in conifer defense.
The diversity of terpenoid compounds produced by plants plays an important role in mediating various plant-herbivore, plant-pollinator, and plant-pathogen interactions. This diversity has resulted from gene duplication and neofunctionalization of the enzymes that synthesize and subsequently modify terpenes. Two diterpene synthases in Norway spruce (Picea abies), isopimaradiene synthase and levo...
متن کاملAbietadiene synthase catalysis: conserved residues involved in protonation-initiated cyclization of geranylgeranyl diphosphate to (+)-copalyl diphosphate.
Abietadiene synthase catalyzes two sequential, mechanistically distinct cyclization reactions in the formation of a mixture of abietadiene double bond isomers as the committed step in resin acid biosynthesis. Each reaction is carried out at a separate active site residing in a structurally distinct domain, and the reactions are kinetically separable. The first cyclization reaction is initiated ...
متن کاملBiosynthesis of the oxygenated diterpene nezukol in the medicinal plant Isodon rubescens is catalyzed by a pair of diterpene synthases
Plants produce an immense diversity of natural products (i.e. secondary or specialized metabolites) that offer a rich source of known and potentially new pharmaceuticals and other desirable bioproducts. The Traditional Chinese Medicinal plant Isodon rubescens (Lamiaceae) contains an array of bioactive labdane-related diterpenoid natural products. Of these, the ent-kauranoid oridonin is the most...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017